You Were Always on My Mind: Introducing Chef’s Hat and COPPER for Personalized Reinforcement Learning

Author:

Barros Pablo,Bloem Anne C.,Hootsmans Inge M.,Opheij Lena M.,Toebosch Romain H. A.,Barakova Emilia,Sciutti Alessandra

Abstract

Reinforcement learning simulation environments pose an important experimental test bed and facilitate data collection for developing AI-based robot applications. Most of them, however, focus on single-agent tasks, which limits their application to the development of social agents. This study proposes the Chef’s Hat simulation environment, which implements a multi-agent competitive card game that is a complete reproduction of the homonymous board game, designed to provoke competitive strategies in humans and emotional responses. The game was shown to be ideal for developing personalized reinforcement learning, in an online learning closed-loop scenario, as its state representation is extremely dynamic and directly related to each of the opponent’s actions. To adapt current reinforcement learning agents to this scenario, we also developed the COmPetitive Prioritized Experience Replay (COPPER) algorithm. With the help of COPPER and the Chef’s Hat simulation environment, we evaluated the following: (1) 12 experimental learning agents, trained via four different regimens (self-play, play against a naive baseline, PER, or COPPER) with three algorithms based on different state-of-the-art learning paradigms (PPO, DQN, and ACER), and two “dummy” baseline agents that take random actions, (2) the performance difference between COPPER and PER agents trained using the PPO algorithm and playing against different agents (PPO, DQN, and ACER) or all DQN agents, and (3) human performance when playing against two different collections of agents. Our experiments demonstrate that COPPER helps agents learn to adapt to different types of opponents, improving the performance when compared to off-line learning models. An additional contribution of the study is the formalization of the Chef’s Hat competitive game and the implementation of the Chef’s Hat Player Club, a collection of trained and assessed agents as an enabler for embedding human competitive strategies in social continual and competitive reinforcement learning.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Computer Science Applications

Reference30 articles.

1. State Abstractions for Lifelong Reinforcement Learning;Abel,2018

2. Provable Self-Play Algorithms for Competitive Reinforcement Learning;Bai,2020

3. Automatic Interpretation of Affective Facial Expressions in the Context of Interpersonal Interaction;Barakova;IEEE Trans. Human-mach. Syst.,2015

4. It’s Food Fight! Introducing the Chef’s Hat Card Game for Affective-Aware Hri;Barros,2021

5. Learning from Learners: Adapting Reinforcement Learning Agents to Be Competitive in a Card Game;Barros,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-Robot Teaming: Grand Challenges;Current Robotics Reports;2023-08-08

2. Incorporating rivalry in reinforcement learning for a competitive game;Neural Computing and Applications;2022-11-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3