Assessing the impact of climate warming on tree species composition and distribution in the forest region of Northeast China

Author:

Fu Yuanyuan,Liu Chang,He Hong S.,Wang Shaoqiang,Wang Lunche,Xie Zhijie

Abstract

Global climate change has markedly influenced the structure and distribution of mid-high-latitude forests. In the forest region of Northeast China, the magnitude of climate warming surpasses the global average, which presents immense challenges to the survival and habitat sustainability of dominant tree species. We predicted the potential changes in aboveground biomass, dominant tree species composition, and distribution in the forest region of Northeast China over the next century under different climatic conditions encompassing the current scenario and future scenarios (RCP2.6, RCP4.5, and RCP8.5). Forest ecosystem process model LINKAGES 3.0 was used to simulate dynamic changes in species-level aboveground biomass under four climate scenarios at the homogeneous land-type unit level. The potential spatial distribution of tree species was investigated based on three indicators: extinction, colonization, and persistence. The results showed that LINKAGES 3.0 model effectively simulated the aboveground biomass of 17 dominant tree species in the forest region of Northeast China, achieving a high accuracy with R² = 0.88. Under the current, RCP2.6, and RCP4.5 climate scenarios, the dominant tree species presented gradual increases in aboveground biomass, whereas under RCP8.5, an initial increase and subsequent decline were observed. With increasing warming magnitude, cold-temperate coniferous tree species will gradually be replaced by other temperate broad-leaved tree species. Furthermore, a large temperature increase under RCP8.5 will likely produce a significant contraction in the potential distribution range of tree species like Larch, Scotch pine, Ribbed birch, Spruce and Fir, while most temperate broad-leaved tree species and Korean pine are expected to demonstrate a northward migration. These findings provide guidance for enhancing the adaptability and resilience of forest ecosystems in middle and high latitudes and addressing the threats posed by climate warming.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3