Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions

Author:

Kou Xinyue,Han Weihua,Kang Jian

Abstract

Plants are exposed to increasingly severe drought events and roots play vital roles in maintaining plant survival, growth, and reproduction. A large body of literature has investigated the adaptive responses of root traits in various plants to water stress and these studies have been reviewed in certain groups of plant species at a certain scale. Nevertheless, these responses have not been synthesized at multiple levels. This paper screened over 2000 literatures for studies of typical root traits including root growth angle, root depth, root length, root diameter, root dry weight, root-to-shoot ratio, root hair length and density and integrates their drought responses at genetic and morphological scales. The genes, quantitative trait loci (QTLs) and hormones that are involved in the regulation of drought response of the root traits were summarized. We then statistically analyzed the drought responses of root traits and discussed the underlying mechanisms. Moreover, we highlighted the drought response of 1-D and 2-D root length density (RLD) distribution in the soil profile. This paper will provide a framework for an integrated understanding of root adaptive responses to water deficit at multiple scales and such insights may provide a basis for selection and breeding of drought tolerant crop lines.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3