Effects of AMF on plant nutrition and growth depend on substrate gravel content and patchiness in the karst species Bidens pilosa L

Author:

Shen Kaiping,He Yuejun,Xu Xinyang,Umer Muhammad,Liu Xiao,Xia Tingting,Guo Yun,Wu Bangli,Xu Han,Zang Lipeng,Gao Lu,Jiao Min,Yang Xionggui,Yan Jiawei

Abstract

Karst ecosystems represent a typical heterogeneous habitat, and it is ubiquitous with varying interactive patches of rock and soil associated with differential weathering patterns of carbonate rocks. Arbuscular mycorrhizae fungi (AMF) play an important role in regulating plant growth and nutrition in heterogeneous karst habitats. However, it remains unclear how AMF affects the growth and nutrition of plants in heterogeneous karst soil with varying patches and weathering gravel. A heterogeneous experiment with Bidens pilosa L. was conducted in a grid microcosm through patching karst soil with different gravel contents. The experimental treatments included the AMF treatments inoculated with (M+) or without (M-) fungus Glomus etunicatum; the substrate patchiness treatments involved different sizes of the homogeneous patch (Homo), the heterogeneous large patch (Hetl), and the heterogeneous small patch (Hets); the substrate gravel treatments in the inner patch involved the free gravel (FG), the low gravel (LG) 20% in 80% soil, and the high gravel (HG) 40% in 60% soil. Plant traits related to growth and nutrients were analyzed by comparing substrate gravel content and patch size. The results showed that AMF was more beneficial in increasing the aboveground biomass of B. pilosa under the LG and HG substrates with a higher root mycorrhizal colonization rate than under the FG substrate with a lower root mycorrhizal colonization rate. AMF enhanced higher growth and nutrients for B. pilosa under the LG and HG substrates than under the FG substrate and under the Hets than under the Hetl. Moreover, AMF alleviated the limited supply of N for B. pilosa under all heterogeneous treatments. Furthermore, the response ratio LnRR of B. pilosa presented that the substrate gravel promoted the highest growth, N and P absorption than the substrate patchiness with M+ treatment, and the gravel content had a more effect on plant growth and nutrition as compared to the patch size. Overall, this study suggests that plant growth and nutrition regulated by AMF mainly depend on the substrate gravel content rather than the spatial patchiness in the heterogeneous karst habitat.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guizhou Province

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3