Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting

Author:

Wen Changji,Chen Hongrui,Ma Zhenyu,Zhang Tian,Yang Ce,Su Hengqiang,Chen Hongbing

Abstract

Frequent outbreaks of agricultural pests can reduce crop production severely and restrict agricultural production. Therefore, automatic monitoring and precise recognition of crop pests have a high practical value in the process of agricultural planting. In recent years, pest recognition and detection have been rapidly improved with the development of deep learning-based methods. Although certain progress has been made in the research on pest detection and identification technology based on deep learning, there are still many problems in the production application in a field environment. This work presents a pest detector for multi-category dense and tiny pests named the Pest-YOLO. First, the idea of focal loss is introduced into the loss function using weight distribution to improve the attention of hard samples. In this way, the problems of hard samples arose from the uneven distribution of pest populations in a dataset and low discrimination features of small pests are relieved. Next, a non-Intersection over Union bounding box selection and suppression algorithm, the confluence strategy, is used. The confluence strategy can eliminate the errors and omissions of pest detection caused by occlusion, adhesion and unlabeling among tiny dense pest individuals to the greatest extent. The proposed Pest-YOLO model is verified on a large-scale pest image dataset, the Pest24, which includes more than 20k images with over 190k pests labeled by agricultural experts and categorized into 24 classes. Experimental results show that the Pest-YOLO can obtain 69.59% for mAP and 77.71% for mRecall on the 24-class pest dataset, which is 5.32% and 28.12% higher than the benchmark model YOLOv4. Meanwhile, our proposed model is superior to other several state-of-the-art methods, including the SSD, RetinaNet, Faster RCNN, YOLOv3, YOLOv4, YOLOv5s, YOLOv5m, YOLOX, DETR, TOOD, YOLOv3-W, and AF-RCNN detectors. The code of the proposed algorithm is available at: https://github.com/chr-secrect/Pest-YOLO.

Funder

Industrial Innovation Funds of Jilin Province of China

Natural Science Foundation of Jilin Province

Publisher

Frontiers Media SA

Subject

Plant Science

Reference40 articles.

1. Comparing SVM and ANN based machine learning methods for species identification of food contaminating beetles;Bisgin;Sci. Rep.,2018

2. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934;Bochkovskiy,2020

3. Soft-NMS–improving object detection with one line of code;Bodla,2017

4. End-to-end object detection with transformers;Carion,2020

5. Vision-based pest detection based on SVM classification method;Ebrahimi;Comput. Electron. Agric.,2017

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3