Grafting promoted antioxidant capacity and carbon and nitrogen metabolism of bitter gourd seedlings under heat stress

Author:

Liang Le,Tang Wen,Lian Huashan,Sun Bo,Huang Zhi,Sun Guochao,Li Xiaomei,Tu Lihua,Li Huanxiu,Tang Yi

Abstract

IntroductionHeat stress can limit vegetable growth, and this can lead to constraints on agricultural production. Grafting technologies, however, can be used to alleviate various plant stresses.MethodsIn this study, the differences in the heat stress impacts and recovery abilities of pumpkin and luffa rootstocks for bitter gourd were analyzed in terms of their antioxidant activity and carbon and nitrogen metabolism.ResultsCompared with the un-grafted and self-grafted bitter gourd, which suffered from heat stress at 40°C for 24 h, heterologously grafted bitter gourd showed higher heat stability of the cell membrane (relative conductivity and malondialdehyde content were reduced), reduced oxidative stress (antioxidant enzyme activity was increased and the reactive oxygen species content reduced), and increased enzyme activity (sucrose phosphate synthase, sucrose synthase, neutral invertase, and acid invertase) and sugar content (soluble sugar, sucrose, fructose, and glucose) in carbon metabolism. The enzyme activity (nitrate reductase, nitrite reductase, and glutamine synthetase) and product content (nitrate and nitrite) of nitrogen metabolism were also found to be increased, and this inhibited the accumulation of ammonium ions. After the seedlings were placed at 25°C for 24 h, the heterogeneous rootstocks could rapidly restore the growth of the bitter gourd seedlings by promoting the antioxidant and carbon and nitrogen metabolism systems. When luffa was used as rootstock, its performance on the indexes was better than that of pumpkin. The correlation between the various indicators was demonstrated using a principal component and correlation analysis.DiscussionThe luffa rootstock was found to be more conducive to reducing cell damage and energy loss in bitter gourd seedlings caused by heat induction through the maintenance of intracellular redox homeostasis and the promotion of carbon and nitrogen metabolism.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3