Stability in the leaf functional traits of understory herbaceous species after 12-yr of nitrogen addition in temperate larch plantations

Author:

Yan Tao,Wang Liying,Wang Peilin,Zhong Tianyu

Abstract

Leaf functional traits play critical roles in plant functioning. Although the functional traits of overstory trees have been extensively studied, minimal research has been conducted regarding understory species, despite the understory layer is an important component of temperate forests. Such insufficiency limit the broader understanding of processes and functions in forest ecosystems, particularly when under the increasing atmospheric nitrogen (N) deposition. Here, we investigated the responses of 18 leaf functional traits in six understory herbaceous species within young and mature stands (three species per stand) in larch (Larix principis-rupprechtii) plantations that subjected to 12 years of anthropogenic N addition. We found that N addition did not significantly impact the photosynthetic traits of understory herbaceous species in either stand; it only led to increased chlorophyll content in Geum aleppicum Jacq. Similarly, with the exception of decreases in the predawn leaf water potential of Sanguisorba officinalis L., N addition did not significantly affect leaf hydraulic traits. With the exception of changes to adaxial epidermis thickness in Potentilla chinensis Ser. (decreased) and G. aleppicum (increased), N addition had negligible effects on leaf anatomical traits and specific leaf area, however, interspecific variations in the plasticity of leaf anatomical traits were observed. Stable responses to N addition were also observed for nonstructural carbohydrates (NSC) and their components (soluble sugars and starch), with the exception of Polygonum divaricatum L., which exhibited increases in NSC. Overall, our results suggest that the functional traits of understory herbaceous species exhibit stability under conditions of long-term N enrichment in temperate plantations.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Gansu Province

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3