Brchli1 mutation induces bright yellow leaves by disrupting magnesium chelatase I subunit function in Chinese cabbage (Brassica rapa L. ssp. pekinensis)

Author:

Liu Chuanhong,Chai Yi,Tan Chong,Shi Fengyan,Zhang Yun,Liu Zhiyong

Abstract

Magnesium chelatase (MgCh) plays a pivotal role in photosynthesis, catalyzing the insertion of magnesium into protoporphyrin IX (Proto IX), a key intermediate in chlorophyll (Chl) biosynthesis. MgCh is a heteromeric complex composed of the MgCh D subunit (CHLD), the MgCh H subunit (CHLH), and the MgCh I subunit (CHLI). The bright yellow leaves (byl) mutant was obtained through ethyl methanesulfonate (EMS) mutagenesis of the ‘FT’ Chinese cabbage (Brassica rapa L. ssp. pekinensis) doubled haploid line, whose Chl content, net photosynthetic rate (Pn), and non-photochemical quenching coefficient (NPQ) were decreased, and whose chloroplast development was incomplete. byl recovered to a light green phenotype under weak light conditions. Genetic analysis revealed that the bright yellow leaves phenotype of byl was caused by a single recessive nuclear gene. Using Mutmap sequencing and Kompetitive allele-specific PCR (KASP) identification, BraA01g010040.3.5C, encoding the CHLI subunit of MgCh, was identified as the candidate gene and named Brchli1. A nonsynonymous G-to-A mutation in the Brchli1 exon resulted in the substitution of aspartic acid with asparagine. Brchli1-silenced Chinese cabbage displayed bright yellow leaves with decreased Brchli1 expression. Transiently overexpressed Brchli1 in the byl mutant restored the green leaf phenotype and significantly increased relative Brchli1 expression levels. Both BrCHLI1 and its mutated variant were localized in chloroplasts. Yeast two-hybrid and luciferase complementation imaging assays demonstrated that BrCHLI1 interacted with both BrCHLD and itself. BrCHLI1 mutations did not affect its interaction with BrCHLD. Together, Brchli1 mutations impaired the function of MgCh, providing insights into the molecular mechanism of leaf coloration.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3