Using composite system index to identify China’s ecological and socio-economic transition zone

Author:

Zhang Hao,Liu Fei,Zhang Jinying

Abstract

Regions with synthetic geographical gradients tend to exhibit distinct ecological transitions. As a compound ecosystem, transition zone can provide a basis for decision-making in the sustainable ecological management by investigating its boundary and complexity. To determine the characteristics of the transition zone where natural ecological and socio-economic factors interact, a conceptual framework and a quantitative identification method for the ecotone of coupled human and natural systems have been proposed. The composite system index can be used to ascertain the coupling intensity, coupling direction, and ecological transition of the system. Taking China as an example, this study showed evidence of the existence of a tremendous amount of ecological and socio-economic transition zone (complex coupled areas) between the east and west of China, and sporadic ecotone in other regions of the country. This transition zone accounted for about 1/4 of China’s land surface area, and had a fragile environment that faced challenges of environmental protection and economic development. In the area across the Hu Line, human and natural factors jointly explain a low proportion of the variance in ecological and socio-economic transition zone (the complexity of coupled systems, with 62.01% of unexplained proportion higher than that in other regions). In this region, the topographic position index was the critical element associated with the transition zone, and accounted for nearly 20% of the variation of composite system index. The discovery and characterization of the ecological and socio-economic transition zone is crucial for understanding its uncertainty and diversity and the complex of coupled ecosystems.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3