Spatial Difference of Interactive Effect Between Temperature and Daylength on Ginkgo Budburst

Author:

Wu Zhaofei,Wang Shuxin,Fu Yongshuo H.,Gong Yufeng,Lin Chen-Feng,Zhao Yun-Peng,Prevéy Janet S.,Zohner Constantin

Abstract

Climate warming-induced shifts in spring phenology have substantially affected the structure and function of terrestrial ecosystems and global biogeochemical cycles. Spring phenology is primarily triggered by spring temperature and is also affected by daylength and winter chilling, yet the relative importance of these cues across spatial gradients remains poorly understood. Here, we conducted a manipulative experiment with two daylength and three temperature treatments to investigate spatial differences in the response of ginkgo budburst to temperature and daylength, using twigs collected at three sites across a spatial gradient: a control site at a low latitude and low elevation on Tianmu Mountain (TMlow), a low latitude and high elevation site on Tianmu Mountain (TMhigh), and a high latitude site on Jiufeng mountain (JF). The mechanisms were also tested using in situ phenological observations of ginkgo along latitudes in China. We found that, compared to TMlow individuals, budburst dates occurred 12.6 (JF) and 7.7 (TMhigh) days earlier in high-latitude and high-elevation individuals when exposed to the same temperature and daylength treatments. Importantly, daylength only affected budburst at low latitudes, with long days (16 h) advancing budburst in low-latitude individuals by, on average, 8.1 days relative to short-day (8 h) conditions. This advance was most pronounced in low-elevation/latitude individuals (TMlow = 9.6 days; TMhigh = 6.7 days; JF = 1.6 days). In addition, we found that the temperature sensitivity of budburst decreased from 3.4 to 2.4 days °C−1 along latitude and from 3.4 to 2.5 days °C−1 along elevation, respectively. The field phenological observations verified the experimental results. Our findings provide empirical evidence of spatial differences in the relative effects of spring temperature and daylength on ginkgo budburst, which improved our understanding of spatial difference in phenological changes and the responses of terrestrial ecosystem to climate change.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3