13C labeling unravels carbon dynamics in banana between mother plant, sucker and corm under drought stress

Author:

Vantyghem Mathilde,Beelen Eline,Hood-Nowotny Rebecca,Merckx Roel,Dercon Gerd

Abstract

Banana is a perennial crop and typically consists of a mother plant and one or more suckers that will serve as the next generation. Suckers are photosynthetically active, but also receive photo-assimilates from the mother plant. While drought stress is the most important abiotic constraint to banana cultivation, its effect on suckers or banana mats as a whole remains unknown. To investigate whether parental support to suckers is altered under drought stress and to determine the photosynthetic cost to the parental plant, we conducted a 13C labeling experiment. We labeled banana mother plants with 13CO2 and traced the label up to two weeks after labeling. This was done under optimal and drought-stressed conditions in plants with and without suckers. We retrieved label in the phloem sap of the corm and sucker as soon as 24 hours after labeling. Overall, 3.1 ± 0.7% of label assimilated by the mother plant ended up in the sucker. Allocation to the sucker seemed to be reduced under drought stress. The absence of a sucker did not enhance the growth of the mother plant; instead, plants without suckers had higher respiratory losses. Furthermore, 5.8 ± 0.4% of the label was allocated to the corm. Sucker presence and drought stress each led to an increase in starch accumulation in the corm, but when both stress and a sucker were present, the amount was severely reduced. Furthermore, the second to fifth fully open leaves were the most important source of photo-assimilates in the plant, but the two younger developing leaves assimilated the same amount of carbon as the four active leaves combined. They exported and imported photo-assimilates simultaneously, hence acting as both source and sink. 13C labeling has allowed us to quantify source and sink strengths of different plant parts, as well as the carbon fluxes between them. We conclude that drought stress and sucker presence, respectively causing a reduction in supply and an increase in carbon demand, both increased the relative amount of carbon allocated to storage tissues. Their combination, however, led to insufficient availability of assimilates and hence a reduced investment in long-term storage and sucker growth.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference32 articles.

1. Photosynthetic modulation in response to plant activity and environment;Adams,2018

2. Climate change and eastern Africa: a review of impact on major crops;Adhikari;Food Energy Secur.,2015

3. The water relations and irrigation requirements of banana (Musa spp.);Carr;Expl Agric.,2009

4. Removal of bunch, leaves, or pseudostem alone, or in combination, influences growth and bunch weight of ratoon crops in two banana cultivars;Dens;J. Hortic. Sci. Biotechnol.,2008

5. De groei van de stam en het blad bij de banaanplant (Musa sp.): kwantitatieve analyse en ontwikkelingsmodel;Devos,1984

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3