Plant beta-turnover rather than nestedness shapes overall taxonomic and phylogenetic beta-diversity triggered by favorable spatial–environmental conditions in large-scale Chinese grasslands

Author:

Yao Zhenyu,Xin Yue,Ma Zhaoxia,Zhao Liqing,Mu Wenkui,Guo Jianying,Ali Arshad

Abstract

IntroductionAlthough it is widely acknowledged that biodiversity maintains plant community assembly processes, exploring the patterns and drivers of beta-diversity (β-diversity; species variation among local plant communities) has received much less attention compared to alpha-diversity (α-diversity; species variation within a local plant community). Here, we aim to examine the patterns and spatial–environmental drivers of taxonomic and phylogenetic β-diversity, and their components such as species turnover and nestedness, in large-scale Leymus chinensis grassland communities.MethodsWe collected plant community data from 166 sites across widely distributed L. chinensis communities in northern China, and then calculated the taxonomic and phylogenetic β-diversity indices (overall, turnover and nestedness) using a pairwise dissimilarity approach. To assess the effects and to explain the variation in the patterns of β-diversity, we collected data on geospatial, climate and soil conditions. We applied descriptive statistics, Mental correlations, and multiple linear regression models to assess the patterns and spatial–environmental drivers of β-diversity.ResultsThe β-turnover, as compared to β-nestedness, exhibited a predominant influence, constituting 92.6% of the taxonomic β-diversity and 80.4% of the phylogenetic β-diversity. Most of the spatial–environmental variables were significantly positively correlated with the overall taxonomic and phylogenetic β-diversity and β-turnover, but not with β-nestedness. Climatic factors such as MAP and MAT were the strongest predictors of both taxonomic and phylogenetic β-diversity and β-turnover. The variance partitioning analysis showed that the combined effects of spatial and environmental factors accounted for 19% and 16% of the variation in the taxonomic and phylogenetic β-diversity (overall), 17% and 12% of the variation in the β-turnover, and 7% and 1% of the variation in the β-nestedness, respectively, which were higher than independent effects of either spatial or environmental factors.DiscussionAt larger spatial scales, the turnover component of β-diversity may be associated with the species complementarity effect, but dominant or functionally important species can vary among communities due to the species selection effect. By incorporating β-diversity into grassland management strategies, we can enhance the provision of vital ecosystem services that bolster human welfare, serving as a resilient barrier against the adverse effects of climate change at regional and global scales.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3