PlMYB308 Regulates Flower Senescence by Modulating Ethylene Biosynthesis in Herbaceous Peony

Author:

Ji Xiaotong,Wang Meiling,Xu Zhuangzhuang,Wang Kai,Sun Daoyang,Niu Lixin

Abstract

Herbaceous peony is an important cut-flower plant cultivated worldwide, but its short vase life substantially restricts its economic value. It is well established that endogenous hormones regulate the senescence process, but their molecular mechanism in flower senescence remains unclear. Here, we isolated a MYB transcription factor gene, PlMYB308, from herbaceous peony flowers, based on transcriptome data. Quantitative real-time PCR analysis showed that PlMYB308 is strongly up-regulated in senescing petals, and its expression was induced by abscisic acid or ethylene and reduced by gibberellin in petals. Treatment with abscisic acid or ethylene accelerated herbaceous peony petal senescence, and gibberellin delayed the process. PlMYB308 silencing delayed peony flower senescence and dramatically increased gibberellin, but reduced ethylene and abscisic acid levels in petals. PlMYB308 ectopic overexpression in tobacco accelerated flower senescence and reduced gibberellin, but increased ethylene and abscisic acid accumulation. Correspondingly, five endogenous hormone biosynthetic genes showed variable expression levels in petals after PlMYB308 silencing or overexpression. A dual-luciferase assay and yeast one-hybrid analysis showed that PlMYB308 specifically binds the PlACO1 promoter. Moreover, treatment with ethylene and 1-MCP can accelerate PlMYB308 silencing-reduced senescence and delay PlMYB308- overexpression-induced senescence. We also found that PlACO1 silencing delayed senescence in herbaceous peony petals. Taken together, our results suggest that the PlMYB308-PlACO1 regulatory checkpoints positively mediate the production of ethylene, and thus contribute to senescence in herbaceous peony flowers.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3