Functional Characterization of Genes Coding for Novel β-D-Glucosidases Involved in the Initial Step of Secoiridoid Glucosides Catabolism in Centaurium erythraea Rafn

Author:

Božunović Jelena,Milutinović Milica,Aničić Neda,Skorić Marijana,Matekalo Dragana,Živković Suzana,Dragićević Milan,Filipović Biljana,Banjanac Tijana,Petrović Luka,Mišić Danijela

Abstract

Secoiridoid glucosides (SGs) are monoterpenoids derived from the iridoid cyclopentane-C-pyran skeleton with β-D glucose linked at C1 position. Coordinated metabolic processes, such as biosynthesis and catabolism of SGs, ensure constitutive presence of these bitter tasting compounds in plant tissues, which plays a decisive role in the defense against pathogens and herbivores. These compounds are susceptible to hydrolysis mediated by enzymes β-glucosidases, and the resulting aglycones are subsequently directed toward different metabolic pathways in plants. Function of two β-D-glucosidases (named CeBGlu1 and CeBGlu2) from centaury (Centaurium erythraea Rafn; fam. Gentianaceae), belonging to the glycoside hydrolase 1 (GH1) family, was confirmed using in vitro assays with recombinant proteins, following their heterologous expression in E. coli and His-tag affinity purification. Although they show slightly differential substrate preference, both isoforms display high specificity toward SGs and the organ-specific distribution of transcripts was positively correlated with the content of SGs in diploid and tetraploid C. erythraea plants. Transient overexpression of CeBGlu1 and CeBGlu2 in C. erythraea leaves induced changes in metabolite profiles. The effectiveness of transgene overexpression has been altered by plant ploidy. UHPLC/DAD/(±)HESI − MS2 profiling of leaves of diploid and tetraploid C. erythraea genotypes revealed that the amounts of major SGs; sweroside, swertiamarin, and gentiopicrin was decreased in agroinfiltrated leaves, especially when CeBGlu1 and CeBGlu2 were co-expressed with transgene silencing suppressor p19. The work demonstrates that in planta metabolic engineering adopting transient overexpression of CeBGlu1 and CeBGlu2 is a suitable tool for the modulation of SGs content and glucosides/aglycones ratio, which might have substantial effects on overall phytochemistry of C. erythraea.

Funder

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3