Salicylic acid had the potential to enhance tolerance in horticultural crops against abiotic stress

Author:

Chen Shanshan,Zhao Chun-Bo,Ren Rui-Min,Jiang Jun-Hai

Abstract

Horticultural crops are greatly disturbed by severe abiotic stress conditions. This is considered one of the major threats to the healthy lives of the human population. Salicylic acid (SA) is famous as one of the multifunctional phytohormones that are widely found in plants. It is also an important bio-stimulator involved in the regulation of growth and the developmental stages of horticultural crops. The productivity of horticultural crops has been improved with the supplemental use of even small amounts of SA. It has good capability to reduce oxidative injuries that occur from the over-production of reactive oxygen species (ROS), potentially elevated photosynthesis, chlorophyll pigments, and stomatal regulation. Physiological and biochemical processes have revealed that SA enhances signaling molecules, enzymatic and non-enzymatic antioxidants, osmolytes, and secondary metabolites activities within the cell compartments of plants. Numerous genomic approaches have also explored that SA regulates transcriptions profiling, transcriptional apprehensions, genomic expression, and metabolism of stress-related genes. Many plant biologists have been working on SA and its functioning in plants; however, its involvement in the enhancement of tolerance against abiotic stress in horticultural crops is still unidentified and needs more attention. Therefore, the current review is focused on a detailed exploration of SA in physiological and biochemical processes in horticultural crops subjected to abiotic stress. The current information is comprehensive and aims to be more supportive of the development of higher-yielding germplasm against abiotic stress.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference81 articles.

1. Role of sulphur in salinity tolerance of date palm (Phoenix dactylifera l.) offshoots cvs. berhi and sayer;Abbas;Int. J. Agric. Food Sci.,2015

2. Effect of GA3 on growth and chemical composition of jujube leaf (Ziziphus spina-christi) under salinity condition;Abdollahi;J. Plant Proc. Fun.,2013

3. Applications of molecular markers to assess genetic diversity in vegetable and ornamental crops-a review;Ahmad;J. Hortic. Technol.,2018

4. Progress in the methods of jujube breeding;Ahmad;Erwerbs-Obstbau,2023

5. Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint;Ahmad;Plant Growth Regul.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3