Assessing the influence of autumnal temperature fluctuations on cold hardiness in different grapevine cultivars: variations across vine age and bud positions

Author:

Kaya Ozkan,Delavar Hava,Shikanai Avery,Auwarter Collin,Hatterman-Valenti Harlene

Abstract

The dynamic fluctuations in autumn temperatures, particularly the marked diurnal variations and the subsequent precipitous drops are key and a pivotal role in viticulture, as they critically influence the acclimation process of grapevines to cold, thereby directly impacting their survival and productivity in cold-climate regions. In this comprehensive study, we investigated the cold hardiness of four grapevine cultivars: ‘Itasca’, ‘Frontenac’, ‘La Crescent’, and ‘Marquette’, focusing on how these cultivars and their individual buds (1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, and 9th) respond to fluctuating weather and low temperatures typical of autumn [-1.1°C (30°F) -9.4°C (15°F) and -17.8°C (0°F)]. Our results illuminated the striking variability in cold hardiness that was manifest not only among the different cultivars but also within individual buds on the same vine, underscoring the critical influence of bud position on a vine for cold hardiness. ‘Frontenac’ showed greater cold hardiness at critical temperatures at which 10%, and 50% of the dormant buds were lethally affected by cold (LT10 and LT50) compared to ‘Itasca’ and ‘La Crescent’, with ‘Marquette’ exhibiting intermediate values. However, in cultivars such as ‘Itasca’ and ‘Marquette’, certain buds demonstrated a pronounced hardiness when faced with colder temperatures, while others exhibited a heightened sensitivity, thereby revealing a nuanced interplay between bud position and a vine’s ability to withstand cold stress. Our study revealed a notable divergence from traditional viticulture understanding; apical buds demonstrated greater cold hardiness than basal buds and opened new paths for research into grapevine physiology. Our results also indicated a significant trend wherein older vines across all studied cultivars displayed enhanced cold hardiness, particularly pronounced at the critical LT50 and the critical temperature at which 90% of the dormant buds were lethally affected by cold (LT90) thresholds, in comparison to younger vines. Moreover, our findings shed light on the impact of autumn’s diurnal temperature variations and the subsequent drop in temperatures on vine cold hardiness, thus highlighted the complex interplay between environmental temperature dynamics and dormant bud hardiness. In conclusion, our study showed that the cold damage observed in grapevines in North Dakota was not a result of extreme temperature fluctuations in the fall. This was confirmed by testing the vines after they had reached various threshold temperatures through differential thermal analysis (DTA) and optical differential nucleation and expansion analysis (ODNEAL) methodologies, particularly before the onset of severe pre-winter cold conditions. These comprehensive findings highlighted the complexity of the vine’s response to climatic conditions and viticultural management, pointing to the need for specific strategies in vineyard management and cultivar selection to optimize bud hardiness and productivity in the face of various environmental challenges, especially in cold climate viticulture.

Publisher

Frontiers Media SA

Reference56 articles.

1. Grape research in India-a review;Adsule;Progressive Horticulture,2012

2. An analysis of winter injury to grapevines as a result of two severe winters in Washington;Ahmedullah;Fruit varieties J. (USA),1985

3. Thermal history parameters drive changes in physiology and cold hardiness of young grapevine plants during winter;Antivilo;Agric. For. Meteorology,2018

4. Cold-induced physiological and biochemical responses of three grapevine cultivars differing in cold tolerance;Beheshti;Acta physiologiae plantarum,2017

5. Photoinhibition of photosynthesis in leaves of grapevine (Vitis vinifera L;Bertamini;cv. Riesling). Effect chilling nights. Photosynthetica,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3