Real-Time PCR Assay for the Diagnosis and Quantification of Co-infections by Diaporthe batatas and Diaporthe destruens in Sweet Potato

Author:

Fujiwara Kazuki,Kobayashi Yuki O.,Usui Manami,Nishioka Kazuya,Nakamura Misa,Kawano Shinji,Okada Yoshihiro,Kobayashi Akira,Miyasaka Atsushi,Hirayae Kazuyuki,Kushima Yoshiyuki,Nishi Yatsuka,Inoue Hiroyoshi

Abstract

Foot rot disease caused by Diaporthe destruens (formerly Plenodomus destruens) has become a major concern for the production of sweet potato [Ipomoea batatas (L.) Lam.] in Japan. A related fungus Diaporthe batatas, which causes dry rot disease of sweet potato, is native and is widespread in fields in Japan. The similar characteristics of these two pathogens pose a challenge for conventional disease diagnosis. Currently, there are no effective molecular measures for identifying and distinguishing D. destruens and D. batatas. Here, we demonstrate a real-time PCR assay that distinguishes and quantifies D. batatas and D. destruens from co-infected sweet potato. The assay was performed with various simulated DNA combinations of D. batatas and D. destruens ranging from 1:1 to 1:100000. The assay was also used with the ratios of D. batatas: D. destruens: sweet potato DNA ranging from 1:1:1 to 1:1:100000. These assays produced a specific amplification product for each of the pathogens, and quantified the fungal biomass over the entire range tested without detecting false positives. The assay was validated by using infected sweet potato collected from various fields; it showed sufficient sensitivity and specificity to quantify and distinguish D. batatas and D. destruens from these field samples. Thus, our real-time PCR assay would be a useful tool for diagnosis of D. batatas and D. destruens and is expected to provide the foundation for the design of integrated disease management strategies for foot rot disease in sweet potato.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3