Contrasting distribution of enzyme activities in the rhizosphere of European beech and Norway spruce

Author:

Song Bin,Razavi Bahar S.,Pena Rodica

Abstract

Recent policies and silvicultural management call for forest regeneration that involve the selection of tree species able to cope with low soil nutrient availability in forest ecosystems. Understanding the impact of different tree species on the rhizosphere processes (e.g., enzyme activities) involved in nutrient mobilisation is critical in selecting suitable species to adapt forests to environmental change. Here, we visualised and investigated the rhizosphere distribution of enzyme activities (cellobiohydrolase, leucine-aminopeptidase, and acid phosphomonoesterase) using zymography. We related the distribution of enzyme activities to the seedling root morphological traits of European beech (Fagus sylvatica) and Norway spruce (Picea abies), the two most cultivated temperate tree species that employ contrasting strategies in soil nutrient acquisition. We found that spruce showed a higher morphological heterogeneity along the roots than beech, resulting in a more robust relationship between rhizoplane-associated enzyme activities and the longitudinal distance from the root apex. The rhizoplane enzyme activities decreased in spruce and increased in beech with the distance from the root apex over a power-law equation. Spruce revealed broader rhizosphere extents of all three enzymes, but only acid phosphomonoesterase activity was higher compared with beech. This latter result was determined by a larger root system found in beech compared with spruce that enhanced cellobiohydrolase and leucine-aminopeptidase activities. The root hair zone and hair lengths were significant variables determining the distribution of enzyme activities in the rhizosphere. Our findings indicate that spruce has a more substantial influence on rhizosphere enzyme production and diffusion than beech, enabling spruce to better mobilise nutrients from organic sources in heterogeneous forest soils.

Funder

University of Reading

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3