Cytological, genetic and transcriptomic characterization of a cucumber albino mutant

Author:

Yan Jinqiang,Liu Bin,Cao Zhenqiang,Chen Lin,Liang Zhaojun,Wang Min,Liu Wenrui,Lin Yu'e,Jiang Biao

Abstract

Photosynthesis, a fundamental process for plant growth and development, is dependent on chloroplast formation and chlorophyll synthesis. Severe disruption of chloroplast structure results in albinism of higher plants. In the present study, we report a cucumber albino alc mutant that presented white cotyledons under normal light conditions and was unable to produce first true leaf. Meanwhile, alc mutant could grow creamy green cotyledons under dim light conditions but died after exposure to normal light irradiation. No chlorophyll and carotenoid were detected in the alc mutant grown under normal light conditions. Using transmission electron microscopy, impaired chloroplasts were observed in this mutant. The genetic analysis indicated that the albino phenotype was recessively controlled by a single locus. Comparative transcriptomic analysis between the alc mutant and wild type revealed that genes involved in chlorophyll metabolism and the methylerythritol 4-phosphate pathway were affected in the alc mutant. In addition, three genes involved in chloroplast development, including two FtsH genes and one PPR gene, were found to have negligible expression in this mutant. The quality of RNA sequencing results was further confirmed by real-time quantitative PCR analysis. We also examined 12 homologous genes from alc mutant in other plant species, but no genetic variation in the coding sequences of these genes was found between alc mutant and wild type. Taken together, we characterized a cucumber albino mutant with albinism phenotype caused by chloroplast development deficiency and this mutant can pave way for future studies on plastid development.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3