Integrated transcriptome and proteome analysis reveals molecular responses of soybean anther under high-temperature stress

Author:

Li Jiajia,Chen Linying,Zhi Xianguan,Wang Jianxin,Lu Yun,Tian Zhuo,Wu Meiyan,Shan Yajing,Chen Haoran,Liao Wei,Long Qun,Zhu Shangshang,Wu Juntao,Qiu Lijuan,Wang Xiaobo

Abstract

It is well documented that high temperature (HT) severely affects the development of soybean male reproductive organs. However, the molecular mechanism of thermo-tolerance in soybean remains unclear. To explore the candidate genes and regulatory mechanism of soybean response to HT stress and flower development, here, the anthers of two previously identified HT-tolerant (JD21) and HT-sensitive (HD14) varieties were analyzed by RNA-seq. In total, 219 (172 upregulated and 47 downregulated), 660 (405 upregulated and 255 downregulated), and 4,854 (2,662 upregulated and 2,192 downregulated) differentially expressed genes (DEGs) were identified between JD21 anthers treated with HT stress vs. JD21 anthers in the natural field conditions (TJA vs. CJA), HD14 anthers treated with HT stress vs. HD14 anthers in the natural field conditions (THA vs. CHA), and JD21 vs. HD14 anthers treated with HT stress (TJA vs. THA), respectively. The results showed that there were more DEGs upregulated in JD21; this might be the reason why JD21 was more HT-resistant than the HT-sensitive variety HD14. GO annotation and KEGG enriched analysis showed that many DEGs are mainly involved in defense response, response to biological stimuli, auxin-activated signaling pathway, plant hormone signal transduction, MAPK signaling pathway-plant, starch and sucrose metabolism, etc. The conjoint analysis of RNA-seq and previous iTRAQ results found that there were 1, 24, and 54 common DEGs/DAPs showing the same expression pattern and 1, 2, and 13 common DEGs/DAPs showing the opposite pattern between TJA vs. CJA, THA vs. CHA, and TJA vs. THA at the protein and gene level, respectively, among which HSPs, transcription factor, GSTU, and other DEGs/DAPs participated in the response to HT stress and flower development. Notably, the qRT-PCR analysis and physiological index change results coincided with the sequencing results of RNA-seq and iTRAQ. In conclusion, the HT-tolerant cultivar performed better under stress than the HT-sensitive cultivar through modulation of HSP family proteins and transcription factors, and by keeping key metabolic pathways such as plant hormone signal transduction normal. This study provided important data and some key candidate genes to better study the effect and molecular basis of HT on anther in soybean at a transcription and translation level.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3