A Bayesian model for control strategy selection against Plasmopara viticola infections

Author:

Valleggi Lorenzo,Carella Giuseppe,Perria Rita,Mugnai Laura,Stefanini Federico Mattia

Abstract

Plant pathogens pose a persistent threat to grape production, causing significant economic losses if disease management strategies are not carefully planned and implemented. Simulation models are one approach to address this challenge because they provide short-term and field-scale disease prediction by incorporating the biological mechanisms of the disease process and the different phenological stages of the vines. In this study, we developed a Bayesian model to predict the probability of Plasmopara viticola infection in grapevines, considering various disease management approaches. To aid decision-making, we introduced a multi-attribute utility function that incorporated a sustainability index for each strategy. The data used in this study were derived from trials conducted during the production years 2018-2020, involving the application of five disease management strategies: conventional Integrated Pest Management (IPM), conventional organic, IPM with substantial fungicide reduction combined with host-defense inducing biostimulants, organic management with biostimulants, and the use of biostimulants only. Two scenarios were considered, one with medium pathogen pressure (Average) and another with high pathogen pressure (Severe). The results indicated that when sustainability indexes were not considered, the conventional IPM strategy provided the most effective disease management in the Average scenario. However, when sustainability indexes were included, the utility values of conventional strategies approached those of reduced fungicide strategies due to their lower environmental impact. In the Severe scenario, the application of biostimulants alone emerged as the most effective strategy. These results suggest that in situations of high disease pressure, the use of conventional strategies effectively combats the disease but at the expense of a greater environmental impact. In contrast to mechanistic-deterministic approaches recently published in the literature, the proposed Bayesian model takes into account the main sources of heterogeneity through the two group-level effects, providing accurate predictions, although precise estimates of random effects may require larger samples than usual. Moreover, the proposed Bayesian model assists the agronomist in selecting the most effective crop protection strategy while accounting for induced environmental side effects through customizable utility functions.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3