Predicting spatial variability of species diversity with the minimum data set of soil properties in an arid desert riparian forest

Author:

Li Xiaotong,Chen Yudong,Lv Guanghui,Wang Jinlong,Jiang Lamei,Wang Hengfang,Yang Xiaodong

Abstract

Species diversity has spatial heterogeneity in ecological systems. Although a large number of studies have demonstrated the influence of soil properties on species diversity, most of them have not considered their spatial variabilities. To remedy the knowledge gap, a 1 ha (100 m × 100 m) plots of arid desert riparian forest was set up in the Ebinur Wetland Nature Reserve (ELWNR) in the NW China. Then, the minimum data set of soil properties (soil MDS) was established using the Principal Component Analysis (PCA) and the Norm Value Determination to represent the total soil property data set (soil TDS). The Geo-statistics and two models (i.e., Random Forest/RF and Multiple Linear Regression/MLR) were used to measure the spatial variability of species diversity, and predict its spatial distribution by the soil MDS, respectively. The results showed that the soil MDS was composed of soil salt content (SSC), soil total phosphorus (STP), soil available phosphorus (SAP), soil organic carbon (SOC) and soil nitrate nitrogen (SNN); which represented the soil TDS perfectly (R2 =0.62). Three species diversity indices (i.e., Shannon–Wiener, Simpson and Pielou indices) had a high spatial dependence (C0/(C0+C)< 25%; 0.72 m ≤ range≤ 0.77 m). Ordinary kriging distribution maps showed that the spatial distribution pattern of species diversity predicted by RF model was closer to its actual distribution compared with MLR model. RF model results suggested that the soil MDS had significant effect on spatial distribution of Shannon–Wiener, Simpson and Pielou indices (Varex= 56%, 49% and 36%, respectively). Among all constituents, SSC had the largest contribution on the spatial variability of species diversity (nearly 10%), while STP had least effect (< 5.3%). We concluded that the soil MDS affected spatial variability of species diversity in arid desert riparian forests. Using RF model can predict spatial variability of species diversity through soil properties. Our work provided a new case and insight for studying the spatial relationship between soil properties and plant species diversity.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3