The dynamics of nocturnal sap flow components of a typical revegetation shrub species on the semiarid Loess Plateau, China

Author:

Fang Weiwei,Liu Jianbo,Lu Nan,Li Ruiping

Abstract

IntroductionThe components of nighttime sap flux (En), which include transpiration (Qn) and stem water recharge (Rn), play important roles in water balance and drought adaptation in plant communities in water-limited regions. However, the quantitative and controlling factors of En components are unclear.MethodsThis study used the heat balance method to measure sap flow density in Vitex negundo on the Loess Plateau for a normal precipitation year (2021) and a wetter year (2022).ResultsThe results showed that the mean values were 1.04 and 2.34 g h-1 cm-2 for Qn, 0.19 and 0.45 g h-1 cm-2 for Rn in 2021 and 2022, respectively, and both variables were greater in the wetter year. The mean contributions of Qn to En were 79.76% and 83.91% in 2021 and 2022, respectively, indicating that the En was mostly used for Qn. Although the vapor pressure deficit (VPD), air temperature (Ta) and soil water content (SWC) were significantly correlated with Qn and Rn on an hourly time scale, they explained a small fraction of the variance in Qn on a daily time scale. The main driving factor was SWC between 40-200 cm on a monthly time scale for the Qn and Rn variations. Rn was little affected by meteorological and SWC factors on a daily scale. During the diurnal course, Qn and Rn initially both declined after sundown because of decreasing VPD and Ta, and Qn was significantly greater than Rn, whereas the two variables increased when VPD was nearly zero and Ta decreased, and Rn was greater than Qn.DiscussionThese results provided a new understanding of ecophysiological responses and adaptation of V. negundo plantations to increasing drought severity and duration under climate changes.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3