Research on machine vision and deep learning based recognition of cotton seedling aphid infestation level

Author:

Xu Xin,Shi Jing,Chen Yongqin,He Qiang,Liu Liangliang,Sun Tong,Ding Ruifeng,Lu Yanhui,Xue Chaoqun,Qiao Hongbo

Abstract

Aphis gossypii Glover is a major insect pest in cotton production, which can cause yield reduction in severe cases. In this paper, we proposed the A. gossypii infestation monitoring method, which identifies the infestation level of A. gossypii at the cotton seedling stage, and can improve the efficiency of early warning and forecasting of A. gossypii, and achieve precise prevention and cure according to the predicted infestation level. We used smartphones to collect A. gossypii infestation images and compiled an infestation image data set. And then constructed, trained, and tested three different A. gossypii infestation recognition models based on Faster Region-based Convolutional Neural Network (R-CNN), You Only Look Once (YOLO)v5 and single-shot detector (SSD) models. The results showed that the YOLOv5 model had the highest mean average precision (mAP) value (95.7%) and frames per second (FPS) value (61.73) for the same conditions. In studying the influence of different image resolutions on the performance of the YOLOv5 model, we found that YOLOv5s performed better than YOLOv5x in terms of overall performance, with the best performance at an image resolution of 640×640 (mAP of 96.8%, FPS of 71.43). And the comparison with the latest YOLOv8s showed that the YOLOv5s performed better than the YOLOv8s. Finally, the trained model was deployed to the Android mobile, and the results showed that mobile-side detection was the best when the image resolution was 256×256, with an accuracy of 81.0% and FPS of 6.98. The real-time recognition system established in this study can provide technical support for infestation forecasting and precise prevention of A. gossypii.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3