Humic acids enhance salt stress tolerance associated with pyrroline 5-carboxylate synthetase gene expression and hormonal alteration in perennial ryegrass (Lolium perenne L.)

Author:

Meng Qiuxia,Yan Min,Zhang Jiaxing,Zhang Qiang,Zhang Xunzhong,Yang Zhiping,Luo Yuan,Wu Wenli

Abstract

Humic acid (HA) has been used as an important component in biostimulant formulations to enhance plant tolerance to salt stress, but the mechanisms underlying are not fully understood. This study was to investigate the physiological and molecular mechanisms of HA’s impact on salt stress tolerance in perennial ryegrass (Lolium perenne L.). The two types of HA were extracted from weathered coal samples collected from Wutai County (WTH) and Jingle County (JLH) of Shanxi Province, China. The grass seedlings subjected to salt stress (250 mM NaCl) were treated with HA solutions containing 0.01% WTH (W/V) or 0.05% JLH (W/V), respectively. The HA treatments improved leaf photosynthetic rate (Pn), transpiration rate (Tr), and stomatal conductance (Gs) and reduced leaf oxidative injury (lower malondialdehyde content) and Pro and intercellular CO2 concentrations in salt-stressed perennial ryegrass. The HA treatments also reversed the decline in antioxidative enzymes ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) activity and improved growth and anti-senescence hormones indole-3-acetic acid (IAA) and brassinosteroid (BR). The HA treatments reduced the relative expression of P5CS and its downstream products proline (Pro) and the stress defense hormones abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), and polyamines (PA). The results of this study indicate that the application of HAs may improve salt stress tolerance by regulating P5CS gene expression related to osmotic adjustment and increasing the activity of antioxidant enzymes and anti-senescence hormones in perennial ryegrass.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3