Optimized management strategy increased grain yield, promoted nitrogen balance, and improved water productivity in winter wheat

Author:

Xu Haicheng,Liu Mei,Tang Yuhai,Zhao Fei,Cao Wenchao,He Mingrong,Peng Dianliang,Dai Xinglong

Abstract

The increasing costs of agricultural production and environmental concerns reinforce the need to reduce resource inputs. Improvements in nitrogen (N) use efficiency (NUE) and water productivity (WP) are critical for sustainable agriculture. We aimed to optimize management strategy to increase wheat grain yield, promote N balance, and improve NUE and WP. A 3-year experiment was conducted with four integrated treatments: conventional practice treatment (CP); improvement of conventional practice treatment (ICP); high-yield management treatment (HY), which aimed for maximizing grain yield regardless of resource inputs cost; and integrated soil and crop system management treatment (ISM), which aimed for testing an optimal combination of sowing date, seeding rate, and fertilization and irrigation management. The average grain yield for ISM was 95.86% of that for HY and was 5.99% and 21.72% higher than that for ICP and CP, respectively. ISM promoted N balance as relatively higher aboveground N uptake, lower inorganic N residue, and lowest inorganic N loss. The average NUE for ISM was 4.15% lower than that for ICP and was remarkably higher than that for HY and CP by 26.36% and 52.37%, respectively. The increased soil water consumption under ISM was mainly due to its increased root length density. Along with a high level of grain yield, ISM obtained a relatively adequate water supply due to the effective use of soil water storage, thereby increasing the average WP by 3.63%–38.10% in comparison with other integrated management treatments. These results demonstrated that optimized management strategy (appropriately delaying sowing date, increasing seeding rate, and optimizing fertilization and irrigation management) used under ISM could promote N balance and improve WP while increasing grain yield and NUE in winter wheat. Therefore, ISM can be considered a recommendable management strategy in the target region.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3