Recognition of terminal buds of densely-planted Chinese fir seedlings using improved YOLOv5 by integrating attention mechanism

Author:

Ye Zhangxi,Guo Qian,Wei Jiahao,Zhang Jian,Zhang Houxi,Bian Liming,Guo Shijie,Zheng Xueyan,Cao Shijiang

Abstract

Accurate and timely information on the number of densely-planted Chinese fir seedlings is essential for their scientific cultivation and intelligent management. However, in the later stage of cultivation, the overlapping of lateral branches among individuals is too severe to identify the entire individual in the UAV image. At the same time, in the high-density planting nursery, the terminal bud of each seedling has a distinctive characteristic of growing upward, which can be used as an identification feature. Still, due to the small size and dense distribution of the terminal buds, the existing recognition algorithm will have a significant error. Therefore, in this study, we proposed a model based on the improved network structure of the latest YOLOv5 algorithm for identifying the terminal bud of Chinese fir seedlings. Firstly, the micro-scale prediction head was added to the original prediction head to enhance the model’s ability to perceive small-sized terminal buds. Secondly, a multi-attention mechanism module composed of Convolutional Block Attention Module (CBAM) and Efficient Channel Attention (ECA) was integrated into the neck of the network to enhance further the model’s ability to focus on key target objects in complex backgrounds. Finally, the methods including data augmentation, Test Time Augmentation (TTA) and Weighted Boxes Fusion (WBF) were used to improve the robustness and generalization of the model for the identification of terminal buds in different growth states. The results showed that, compared with the standard version of YOLOv5, the recognition accuracy of the improved YOLOv5 was significantly increased, with a precision of 95.55%, a recall of 95.84%, an F1-Score of 96.54%, and an mAP of 94.63%. Under the same experimental conditions, compared with other current mainstream algorithms (YOLOv3, Faster R-CNN, and PP-YOLO), the average precision and F1-Score of the improved YOLOv5 also increased by 9.51-28.19 percentage points and 15.92-32.94 percentage points, respectively. Overall, The improved YOLOv5 algorithm integrated with the attention network can accurately identify the terminal buds of densely-planted Chinese fir seedlings in UAV images and provide technical support for large-scale and automated counting and precision cultivation of Chinese fir seedlings.

Funder

Science and Technology Plan Projects of Tibet Autonomous Region

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Frontiers Media SA

Subject

Plant Science

Reference42 articles.

1. Feature and deep learning in remote sensing applications;Ball;J. Appl. Remote Sens.,2018

2. "Lessons learned from UAV-based remote sensing for precision agriculture";Bhandari,2018

3. Closing the gap between phenotyping and genotyping: Review of advanced, image-based phenotyping technologies in forestry;Bian;Ann. For. Sci.,2022

4. Yolov4: Optimal speed and accuracy of object detection;Bochkovskiy;arXiv,2020

5. "Soft-NMS–improving object detection with one line of code";Bodla,2017

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3