Author:
Lomin Sergey N.,Myakushina Yulia A.,Kolachevskaya Oksana O.,Getman Irina A.,Savelieva Ekaterina M.,Arkhipov Dmitry V.,Deigraf Svetlana V.,Romanov Georgy A.
Abstract
Cytokinins (CKs) were earlier shown to promote potato tuberization. Our study aimed to identify and characterize CK-related genes which constitute CK regulatory system in the core potato (Solanum tuberosum) genome. For that, CK-related genes were retrieved from the sequenced genome of the S. tuberosum doubled monoploid (DM) Phureja group, classified and compared with Arabidopsis orthologs. Analysis of selected gene expression was performed with a transcriptome database for the S. tuberosum heterozygous diploid line RH89-039-16. Genes responsible for CK signaling, biosynthesis, transport, and metabolism were categorized in an organ-specific fashion. According to this database, CK receptors StHK2/3 predominate in leaves and flowers, StHK4 in roots. Among phosphotransmitters, StHP1a expression largely predominates. Surprisingly, two pseudo-phosphotransmitters intended to suppress CK effects are hardly expressed in studied organs. Among B-type RR genes, StRR1b, StRR11, and StRR18a are actively expressed, with StRR1b expressing most uniformly in all organs and StRR11 exhibiting the highest expression in roots. By cluster analysis four types of prevailing CK-signaling chains were identified in (1) leaves and flowers, StHK2/3→StHP1a→StRR1b/+; (2) shoot apical meristems, stolons, and mature tubers, StHK2/4→StHP1a→StRR1b/+; (3) stems and young tubers, StHK2/4→StHP1a→StRR1b/11/18a; and (4) roots and tuber sprouts, StHK4→StHP1a→StRR11/18a. CK synthesis genes StIPT3/5 and StCYP735A are expressed mainly in roots followed by tuber sprouts, but rather weakly in stolons and tubers. By contrast, CK-activation genes StLOGs are active in stolons, and StLOG3b expression is even stolon-confined. Apparently, the main CK effects on tuber initiation are realized via activity of StLOG1/3a/3b/7c/8a genes in stolons. Current advances and future directions in potato research are discussed.
Funder
Russian Science Foundation
Reference53 articles.
1. Transformed potato plants as a model for studying the hormonal and carbohydrate regulation of tuberization.;Aksenova;Russ. J. Plant Physiol.,2000
2. Hormonal regulation of tuber formation in potato plants.;Aksenova;Russ. J. Plant Physiol.,2012
3. Hormonal regulation of tuber formation in potato;Aksenova;Bulbous Plants: Biotechnology,2014
4. Regulation of potato tuber dormancy and sprouting.;Aksenova;Russ. J. Plant Physiol.,2013
5. Modeling of protein-protein interactions in cytokinin signal transduction.;Arkhipov;Int. J. Mol. Sci.,2019
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献