Contrasting Effects of Nitrogen Addition on Vegetative Phenology in Dry and Wet Years in a Temperate Steppe on the Mongolian Plateau

Author:

Zhou Zhenxing,Zhang Liwei,Liu Yinzhan,Zhang Kunpeng,Wang Wenrui,Zhu Junkang,Chai Shijie,Zhang Huiying,Miao Yuan

Abstract

Changes in spring and autumn phenology and thus growing season length (GSL) pose great challenges in accurately predicting terrestrial primary productivity. However, how spring and autumn phenology in response to land-use change and nitrogen deposition and underlying mechanisms remain unclear. This study was conducted to explore the GSL and its components [i.e., the beginning of growing season and ending of growing season (EGS)] in response to mowing and nitrogen addition in a temperate steppe on the Mongolia Plateau during 2 years with hydrologically contrasting condition [dry (2014) vs. wet (2015)]. Our results demonstrated that mowing advanced the BGS only by 3.83 days, while nitrogen addition advanced and delayed the BGS and EGS by 2.85 and 3.31 days, respectively, and thus prolonged the GSL by 6.16 days across the two growing seasons from 2014 to 2015. When analyzed by each year, nitrogen addition lengthened the GSL in the dry year (2014), whereas it shortened the GSL in the wet year (2015). Further analyses revealed that the contrasting impacts of nitrogen on the GSL were attributed to monthly precipitation regimes and plant growth rate indicated by the maximum of normalized difference vegetation index (NDVmax). Moreover, changes in the GSL and its two components had divergent impacts on community productivity. The findings highlight the critical role of precipitation regimes in regulating the responses of spring and autumn phenology to nutrient enrichment and suggest that the relationships of ecosystem productivity with spring and autumn phenology largely depend on interannual precipitation fluctuations under future increased nitrogen deposition scenarios.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3