Differences in Allometric Relationship of Two Dominant Woody Species Among Various Terrains in a Desert Region of Central Asia

Author:

Wu Xue,Zheng Xin-Jun,Mu Xiao-Han,Li Yan

Abstract

The allometric relationship among different functional traits is an ecological strategy for plants to promote resource utilization, which indicates the ability of plants to adapt to environmental changes coordinately. In this study, we conducted a field survey on Haloxylon ammodendron and H. persicum among different terrains (dune crest, eastern slope, western slope and inter-dune) in the Gurbantunggut Desert, obtained their quantitative and morphological characteristics, and analyzed their allometric relationships between plant height and canopy radius, plant height and basal diameter by using standardized major axis estimation. We found that: (1) The dominated terrains of H. ammodendron and H. persicum were different; (2) The individual morphology of the two Haloxylon species changed significantly with the terrains (p < 0.05), with the largest and smallest ones growing on the eastern slope and the inter-dune lowland, respectively; (3) Fixed allometric patterns were observed in the above-ground parts of the two Haloxylon species, as the growth of canopy and basal stem was preferentially to plant height; (4) These allometric relationships were significantly affected by the terrain, and exhibited discrepancy between two species, they both invested less in plant height in windy habitats, such as the dune crest and western slope, but H. ammodendron growing on the western slope and H. persicum growing on the eastern slope invested more in basal diameter for strengthening mechanical support and resources acquisition, respectively. These results indicated that both studied species adopted an ecological strategy that allocating more resources to horizontal expansion rather than vertical growth, the terrain has an important influence on the allometric relationship of their above-ground parts, and the trade-off mechanism of main components investing was different for these two species due to habitat heterogeneity and ecological adaptability.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3