Rewiring of primary metabolism for ammonium recycling under short-term low CO2 treatment – its implication for C4 evolution

Author:

Miao Fenfen,Wang Ying,Haq Noor UI,Lyu Ming-Ju Amy,Zhu Xin-Guang

Abstract

The dramatic decrease in atmospheric CO2 concentration during Oligocene was proposed as directly linked to C4 evolution. However, it remains unclear how the decreased CO2 concentration directly facilitate C4 evolution, besides its role as a selection pressure. We conducted a systematic transcriptomics and metabolomics analysis under short-term low CO2 condition and found that Arabidopsis grown under this condition showed 1) increased expression of most genes encoding C4-related enzymes and transporters; 2) increased expression of genes involved in photorespiration and pathways related to carbon skeleton generation for ammonium refixation; 3) increased expression of genes directly involved in ammonium refixation. Furthermore, we found that in vitro treatment of leaves with NH4+ induced a similar pattern of changes in C4 related genes and genes involved in ammonium refixation. These data support the view that Arabidopsis grown under short-term low CO2 conditions rewired its metabolism to supply carbon skeleton for ammonium recycling, during which process the expression of C4 genes were up-regulated as a result of a hitchhiking process. This study provides new insights into the adaptation of the C3 model plant Arabidopsis under low CO2 conditions and suggests that low CO2 can facilitate the evolution of C4 photosynthesis beyond the commonly assumed role of being a selection pressure.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3