Water Uptake Tradeoffs of Dominant Shrub Species in the Coastal Wetlands of the Yellow River Delta, China

Author:

Zhu Jinfang,Liu Jingtao,Li Junsheng,Zhao Caiyun,Sun Jingkuan

Abstract

Tamarix chinensis and Ziziphus jujuba are two dominant shrub species on Chenier Island in the Yellow River Delta, China. Water is a restrictive factor determining the plant growth, vegetation composition, and community succession in this coastal zone. We investigated how water uptake tradeoffs of the two shrub species responded to soil water fluctuations caused by seasonal variations of precipitation. The soil water content, salinity and δ18O values of potential water sources (soil water in 0–20, 20–40, 40–60, and 60–100 cm soil layers, and groundwater) and plant xylem water were measured in wet (July 2013) and dry (July 2014) seasons. The IsoSource model was employed to calculate the contributions of different water sources to plant xylem water. The results showed that δ18O values of soil water decreased significantly with soil depth in the dry season, while increased significantly with soil depth in the wet season. In the wet season, when the soil water was abundant, Z. jujuba mostly used the soil water from the 60–100 cm layer, while T. chinensis took up a mixture of groundwater and soil water from the 60–100 cm layer. In the dry season, when the soil water was depleted because of low precipitation, Z. jujuba mainly took up a mixture of the soil water from 20 to 100 cm soil layers, while T. chinensis mainly used groundwater. T. chinensis and Z. jujuba showed different ecological amplitudes of water sources during dry and wet seasons. The niche differentiation of major water sources for T. chinensis and Z. jujuba demonstrated their adaptabilities to the fluctuations of soil moisture in water-limited ecosystems. Water niche differentiations of coexisting shrub species were expected to minimize their competition for limited water sources, contributing to successful coexistence and increasing the resilience of the coastal wetland ecosystem to drought.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3