Unveiling the potential of cellulose nanofibre based nitrogen fertilizer and its transformative effect on Vigna radiata (Mung Bean): nanofibre for sustainable agriculture

Author:

Sharma Neha,Kochar Mandira,Allardyce Benjamin James,Rajkhowa Rangam,Agrawal Ruchi

Abstract

IntroductionFertilizer management is crucial to maintaining a balance between environmental health, plant health, and total crop yield. Farmers are overutilizing fertilizers with a mind set to enhance the productive capacity of the field, which adversely impacts soil fertility and causes serious environmental hazards. To mitigate the issues of over-utilization of fertilizers, controlled-release fertilizers were developed using nitrogen fertilizer (ammonium chloride) loaded on cellulose nanofibres (named CNF*N).MethodologyIn this study, the effects of CNF*N were compared with commercial nitrogen fertilizer (ammonium chloride) on Vigna radiata (Mung) under greenhouse conditions. The pot experiment was conducted using six treatments: first treatment was control, where the plant was cultivated (T1); second treatment was T2, where the plant was cultivated with CNF to determine the impact of CNF on the plant; third was T3 where commercial ammonium chloride (24 mg/ 2 kg soil) was added to the plant; fourth was T4, where the plant was loaded with CNF, viz. CNF*N contains 4.8 mg of nitrogen; fifth was T5 CNF*N pellet contains 12 mg of nitrogen, and the last sixth treatment (T6) where CNF*N pellet containing 24 mg of nitrogen.ResultsIt indicated that the growth parameters were best achieved in T6 treatment. Plant height was at its maximum in the T6 treatment (44.4 ±0.1cm) after the second harvest, whereas the minimum plant height was observed in T1, which was 39.1 ±0.1 cm. Root-to-shoot weight ratio was also maximum in T6 (0.183± 0.02) and minimum in T1 (0.07± 0.01) after second harvesting. The significant difference among the treatments was determined with Tukey’s honestly significant difference (HSD). The nitrogen content (available and total) was significantly higher in the T4, T5, and T6 treatments (0.22, 0.25, and 0.28%) as compared to the control treatments (T1 (0.12%), T2 (0.13%), and T3 (0.14%) during the second harvesting stage (90 days), as nitrogen plays a crucial role in the development of vegetative growth in Vigna radiata. The rate of controlled-release nitrogen-fertilizer was found to be optimal in terms of plant growth and soil nutrients; hence, it could potentially play a crucial role in improving soil health and the yield of the crop.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference33 articles.

1. General Characteristics and Genetic Improvement Status of moong (Vigna radiata L.) in Ethiopia;Alemu;Int. J. Agric. Innov. Res.,2016

2. Microbial phosphorus solubilization and its potential for use in sustainable agriculture;Alori;Front. Microbiol.,2017

3. Response of mungbean (Vigna radiata L.) to nitrogen and irrigation management;Asaduzzaman;American-Eurasian J. Sci. Res.,2008

4. Determining the effects of nitrogen rate on cotton root growth and distribution with soil cores and minirhizotrons;Chen;PloS One,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3