Automatic detection of pesticide residues on the surface of lettuce leaves using images of feature wavelengths spectrum

Author:

Sun Lei,Cui Xiwen,Fan Xiaofei,Suo Xuesong,Fan Baojiang,Zhang Xuejing

Abstract

The inappropriate application of pesticides to vegetable crops often results in environmental pollution, which seriously impacts the environment and human health. Given that current methods of pesticide residue detection are associated with issues such as low accuracy, high equipment cost, and complex flow, this study puts forward a new method for detecting pesticide residues on lettuce leaves. To establish this method, spectral analysis was used to determine the characteristic wavelength of pesticide residues (709 nm), machine vision equipment was improved, and a bandpass filter and light source of characteristic wavelength were installed to acquire leaf image information. Next, image preprocessing and feature information extraction were automatically implemented through programming. Several links were established for the training model so that the required feature information could be automatically extracted after the batch input of images. The pesticide residue detected using the chemical method was taken as the output and modeled, together with the input image information, using the convolutional neural network (CNN) algorithm. Furthermore, a prediction program was rewritten to generalize the input images during the prediction process and directly obtain the output pesticide residue. The experimental results revealed that when the detection device and method designed in this study were used to detect pesticide residues on lettuce leaves in a key state laboratory, the coefficient of determination of the equation reached 0.883, and the root mean square error (RMSE) was 0.134 mg/L, indicating high accuracy and that the proposed method integrated the advantages of spectrum detection and deep learning. According to comparison testing, the proposed method can meet Chinese national standards in terms of accuracy. Moreover, the improved machine vision equipment was less expensive, thus providing powerful support for the application and popularization of the proposed method.

Funder

National Natural Science Foundation of China

Hebei Provincial Key Research Projects

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3