Physiological responses induced by phospholipase C isoform 5 upon heat stress in Arabidopsis thaliana

Author:

Annum Nazish,Ahmed Moddassir,Tester Mark,Mukhtar Zahid,Saeed Nasir Ahmad

Abstract

Plant’s perception of heat stress involves several pathways and signaling molecules, such as phosphoinositide, which is derived from structural membrane lipids phosphatidylinositol. Phospholipase C (PLC) is a well-known signaling enzyme containing many isoforms in different organisms. In the present study, Phospholipase C Isoform 5 (PLC5) was investigated for its role in thermotolerance in Arabidopsis thaliana. Two over-expressing lines and one knock-down mutant of PLC5 were first treated at a moderate temperature (37 °C) and left for recovery. Then again exposed to a high temperature (45 °C) to check the seedling viability and chlorophyll contents. Root behavior and changes in 32Pi labeled phospholipids were investigated after their exposure to high temperatures. Over-expression of PLC5 (PLC5 OE) exhibited quick and better phenotypic recovery with bigger and greener leaves followed by chlorophyll contents as compared to wild-type (Col-0) and PLC5 knock-down mutant in which seedling recovery was compromised. PLC5 knock-down mutant illustrated well-developed root architecture under controlled conditions but stunted secondary roots under heat stress as compared to over-expressing PLC5 lines. Around 2.3-fold increase in phosphatidylinositol 4,5-bisphosphate level was observed in PLC5 OE lines upon heat stress compared to wild-type and PLC5 knock-down mutant lines. A significant increase in phosphatidylglycerol was also observed in PLC5 OE lines as compared to Col-0 and PLC5 knock-down mutant lines. The results of the present study demonstrated that PLC5 over-expression contributes to heat stress tolerance while maintaining its photosynthetic activity and is also observed to be associated with primary and secondary root growth in Arabidopsis thaliana.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3