Ecology and Biodiversity Ontology Alignment for Smart Environment via Adaptive Compact Evolutionary Algorithm

Author:

Xue Xingsi,Tsai Pei-Wei

Abstract

Smart Environment (SE) focuses on the initiatives for healthy living, where ecological issues and biodiversity play a vital role in the environment and sustainability. To manage the knowledge on ecology and biodiversity and preserve the ecosystem and biodiversity simultaneously, it is necessary to align the data entities in different ecology and biodiversity ontologies. Since the problem of Ecology and Biodiversity Ontology Alignment (EBOA) is a large-scale optimization problem with sparse solutions, finding high-quality EBOA is an open challenge. Evolutionary Algorithm (EA) is a state-of-the-art technique in the ontology aligning domain, and this study further proposes an Adaptive Compact EA (ACEA) to address the problem of EBOA, which uses semantic reasoning to reduce searching space and adaptively guides searching direction to improve the algorithm's performance. In addition, we formally model the problem of EBOA as a discrete optimization problem, which maximizes the alignment's completeness and correctness through determining an optimal entity corresponding set. After that, a hybrid entity similarity measure is presented to distinguish the heterogeneous data entities, and an ACEA-based aligning technique is proposed. The experiment uses the famous Biodiversity and Ecology track to test ACEA's performance, and the experimental results show that ACEA-based aligning technique statistically outperforms other EA-based and state-of-the-art aligning techniques.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Frontiers Media SA

Subject

Plant Science

Reference39 articles.

1. A hybrid evolutionary approach for solving the ontology alignment problem;Acampora;Int. J. Intell. Syst,2012

2. Enhancing ontology alignment through a memetic aggregation of similarity measures;Acampora;Inf. Sci,2013

3. “Results of the ontology alignment evaluation initiative 2019,”;Algergawy,2019

4. “Ontology alignment based on instances using hybrid genetic algorithm,”;Alves,2012

5. The semantic web;Berners-Lee;Sci. Am,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3