How ambient temperature affects the heading date of foxtail millet (Setaria italica)

Author:

Huang Ya-Chen,Wang Yu-tang,Choong Yee-ching,Huang Hsin-ya,Chen Yu-ru,Hsieh Tzung-Fu,Lin Yann-rong

Abstract

Foxtail millet (Setaria italica), a short-day plant, is one of the important crops for food security encountering climate change, particularly in regions where it is a staple food. Under the short-day condition in Taiwan, the heading dates (HDs) of foxtail millet accessions varied by genotypes and ambient temperature (AT). The allelic polymorphisms in flowering time (FT)–related genes were associated with HD variations. AT, in the range of 13°C–30°C that was based on field studies at three different latitudes in Taiwan and observations in the phytotron at four different AT regimes, was positively correlated with growth rate, and high AT promoted HD. To elucidate the molecular mechanism of foxtail millet HD, the expression of 14 key FT-related genes in four accessions at different ATs was assessed. We found that the expression levels of SiPRR95, SiPRR1, SiPRR59, SiGhd7-2, SiPHYB, and SiGhd7 were negatively correlated with AT, whereas the expression levels of SiEhd1, SiFT11, and SiCO4 were positively correlated with AT. Furthermore, the expression levels of SiGhd7-2, SiEhd1, SiFT, and SiFT11 were significantly associated with HD. A coexpression regulatory network was identified that shown genes involved in the circadian clock, light and temperature signaling, and regulation of flowering, but not those involved in photoperiod pathway, interacted and were influenced by AT. The results reveal how gene × temperature and gene × gene interactions affect the HD in foxtail millet and could serve as a foundation for breeding foxtail millet cultivars for shift production to increase yield in response to global warming.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3