Developing precision agriculture using data augmentation framework for automatic identification of castor insect pests

Author:

Nitin ,Gupta Satinder Bal,Yadav RajKumar,Bovand Fatemeh,Tyagi Pankaj Kumar

Abstract

Castor (Ricinus communis L.) is an important nonedible industrial crop that produces oil, which is used in the production of medicines, lubricants, and other products. However, the quality and quantity of castor oil are critical factors that can be degraded by various insect pest attacks. The traditional method of identifying the correct category of pests required a significant amount of time and expertise. To solve this issue, automatic insect pest detection methods combined with precision agriculture can help farmers in providing adequate support for sustainable agriculture development. For accurate predictions, the recognition system requires a sufficient amount of data from a real-world situation, which is not always available. In this regard, data augmentation is a popular technique used for data enrichment. The research conducted in this investigation established an insect pest dataset of common castor pests. This paper proposes a hybrid manipulation-based approach for data augmentation to solve the issue of the lack of a suitable dataset for effective vision-based model training. The deep convolutional neural networks VGG16, VGG19, and ResNet50 are then adopted to analyze the effects of the proposed augmentation method. The prediction results show that the proposed method addresses the challenges associated with adequate dataset size and significantly improves overall performance when compared to previous methods.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference63 articles.

1. Tomato plant disease detection using transfer learning with c-GAN synthetic images;Abbas;Comput. Electron. Agriculture.,2021

2. Registration based data augmentation for multiple sclerosis lesion segmentation;Abolvardi;Digital Image Computing: Techniques Appl. (DICTA),2019

3. Hybrid deep learning (HDL)-based brain-computer interface (BCI) systems: A systematic review;Alzahab;Brain Sci.,2021

4. Pest identification via deep residual learning in complex background;Cheng;Comput. Electron. Agric.,2017

5. Agricultural pests tracking and identification in video surveillance based on deep learning;Cheng,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3