Molecular insights into mechanisms underlying thermo-tolerance in tomato

Author:

Singh Achuit K.,Mishra Pallavi,Kashyap Sarvesh Pratap,Karkute Suhas G.,Singh Prabhakar Mohan,Rai Nagendra,Bahadur Anant,Behera Tusar K.

Abstract

Plant productivity is being seriously compromised by climate-change-induced temperature extremities. Agriculture and food safety are threatened due to global warming, and in many cases the negative impacts have already begun. Heat stress leads to significant losses in yield due to changes in growth pattern, plant phonologies, sensitivity to pests, flowering, grain filling, maturity period shrinkage, and senescence. Tomato is the second most important vegetable crop. It is very sensitive to heat stress and thus, yield losses in tomato due to heat stress could affect food and nutritional security. Tomato plants respond to heat stress with a variety of cellular, physiological, and molecular responses, beginning with the early heat sensing, followed by signal transduction, antioxidant defense, osmolyte synthesis and regulated gene expression. Recent findings suggest that specific plant organs are extremely sensitive to heat compared to the entire plant, redirecting the research more towards generative tissues. This is because, during sexual reproduction, developing pollens are the most sensitive to heat. Often, just a few degrees of temperature elevation during pollen development can have a negative effect on crop production. Furthermore, recent research has discovered certain genetic and epigenetic mechanisms playing key role in thermo-tolerance and have defined new directions for tomato heat stress response (HSR). Present challenges are to increase the understanding of molecular mechanisms underlying HS, and to identify superior genotypes with more tolerance to extreme temperatures. Several metabolites, genes, heat shock factors (HSFs) and microRNAs work together to regulate the plant HSR. The present review provides an insight into molecular mechanisms of heat tolerance and current knowledge of genetic and epigenetic control of heat-tolerance in tomato for sustainable agriculture in the future. The information will significantly contribute to improve breeding programs for development of heat tolerant cultivars.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3