Community-based mechanisms underlying the root cadmium uptake regulated by Cd-tolerant strains in rice (Oryza sativa. L)

Author:

Li Peng,Xiong Ziqin,Tian Yunhe,Zheng Zhongyi,Liu Zhixuan,Hu Ruiwen,Wang Qiming,Ao Hejun,Yi Zhenxie,Li Juan

Abstract

In recent years, the problem of Cd pollution in paddy fields has become more and more serious, which seriously threatens the safe production of food crops and human health. Using microorganisms to reduce cadmium pollution in rice fields is a green, safe and efficient method, the complicated interactions between the microbes in rice roots throughout the process of cadmium absorption by rice roots are poorly understood. In this investigation, a hydroponic pot experiment was used to examine the effects of bacteria R3 (Herbaspirillum sp) and T4 (Bacillus cereus) on cadmium uptake and the endophytic bacterial community in rice roots. The results showed that compared with CK (Uninoculated bacterial liquid), the two strains had significant inhibitory or promotive effects on cadmium uptake in rice plant, respectively. Among them, the decrease of cadmium content in rice plants by R3 strain reached 78.57-79.39%, and the increase of cadmium content in rice plants by T4 strain reached 140.49-158.19%. Further investigation showed that the cadmium content and root cadmium enrichment coefficient of rice plants were significantly negatively correlated with the relative abundances of Burkholderia and Acidovorax, and significantly positively correlated with the relative abundances of Achromobacter, Agromyces and Acidocella. Moreover, a more complex network of microbes in rice roots inhibited rice plants from absorbing cadmium. These results suggest that cadmium uptake by rice plants is closely related to the endophytic bacterial community of roots. This study provides a reference scheme for the safe production of crops in cadmium contaminated paddies and lays a solid theoretical foundation for subsequent field applications.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference62 articles.

1. Isolation and Identification of Achromobacter denitrificans and Evaluation of its Capacity in Cadmium Removal;Abyar;Polish J. Environ. Stud.,2012

2. Cadmium Toxicity in Plants;Andresen,2013

3. Silicon induces phytochelatin and ROS scavengers facilitating cadmium detoxification in rice;Bari;Plant Biol.,2020

4. Deciphering microbial interactions and detecting keystone species with co-occurrence networks;Berry;Front. Microbiol.,2014

5. Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals;Chatterjee;Metallomics,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3