Kernel Water Relations and Kernel Filling Traits in Maize (Zea mays L.) Are Influenced by Water-Deficit Condition in a Tropical Environment

Author:

Alam Md. Robiul,Nakasathien Sutkhet,Molla Md. Samim Hossain,Islam Md. Ariful,Maniruzzaman Md.,Ali Md. Akkas,Sarobol Ed,Vichukit Vichan,Hassan Mohamed M.,Dessoky Eldessoky S.,Abd El-Ghany Enas M.,Brestic Marian,Skalicky Milan,Jagadish S. V. Krishna,Hossain Akbar

Abstract

Water deficit is a major limiting condition for adaptation of maize in tropical environments. The aims of the current observations were to evaluate the kernel water relations for determining kernel developmental progress, rate, and duration of kernel filling, stem reserve mobilization in maize. In addition, canopy temperature, cell membrane stability, and anatomical adaptation under prolonged periods of pre- and post-anthesis water deficit in different hybrids was quantified to support observations related to kernel filling dynamics. In this context, two field experiments in two consecutive years were conducted with five levels of water regimes: control (D1), and four water deficit treatments [V10 to V13 (D2); V13 to V17 (D3); V17 to blister stage (D4); blisters to physiological maturity (D5)], on three maize hybrids (Pioneer 30B80, NK 40, and Suwan 4452) in Expt. 1. Expt. 2 had four water regimes: control (D1), three water deficit treatments [V10 to anthesis (D2); anthesis to milk stage (D3); milk to physiological maturity (D4)], and two maize hybrids (NK 40 and Suwan 4452). Water deficit imposed at different stages significantly reduced maximum kernel water content (MKWC), kernel filling duration (KFD), final kernel weight (FKW), and kernel weight ear–1 while it increased kernel water loss rate (KWLR), kernel filling rate (KFR), and stem weight depletion (SWD) across maize hybrids in both experiments. The lowest MKWC under water deficit was at D3 in both experiments, indicating that lower KFR results in lowest FKW in maize. Findings indicate that the MKWC (R2 = 0.85 and 0.41) and KFR (R2 = 0.62 and 0.37) were positively related to FKW in Expt. 1 and 2, respectively. The KFD was reduced by 5, 7, 7, and 11 days under water deficit at D3, D4 in Expt. 2 and D4, D5 in Expt. 1 as compared to control, respectively. Water deficit at D5 in Expt. 1 and D4 in Expt. 2 increased KWLR, KFR, and SWD. In Expt. 2, lower canopy temperature and electrical conductivity indicated cell membrane stability across water regimes in NK 40. Hybrid NK 40 under water deficit had significantly higher cellular adaptation by increasing the number of xylem vessel while reducing vessel diameter in leaf mid-rib and attached leaf blade. These physiological adjustments improved efficient transport of water from root to the shoot, which in addition to higher kernel water content, MKWC, KFD, KFR, and stem reserve mobilization capacity, rendered NK 40 to be better adapted to water-deficit conditions under tropical environments.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3