An integrated feature selection approach to high water stress yield prediction

Author:

Li Zongpeng,Zhou Xinguo,Cheng Qian,Zhai Weiguang,Mao Bohan,Li Yafeng,Chen Zhen

Abstract

The timely and precise prediction of winter wheat yield plays a critical role in understanding food supply dynamics and ensuring global food security. In recent years, the application of unmanned aerial remote sensing has significantly advanced agricultural yield prediction research. This has led to the emergence of numerous vegetation indices that are sensitive to yield variations. However, not all of these vegetation indices are universally suitable for predicting yields across different environments and crop types. Consequently, the process of feature selection for vegetation index sets becomes essential to enhance the performance of yield prediction models. This study aims to develop an integrated feature selection method known as PCRF-RFE, with a focus on vegetation index feature selection. Initially, building upon prior research, we acquired multispectral images during the flowering and grain filling stages and identified 35 yield-sensitive multispectral indices. We then applied the Pearson correlation coefficient (PC) and random forest importance (RF) methods to select relevant features for the vegetation index set. Feature filtering thresholds were set at 0.53 and 1.9 for the respective methods. The union set of features selected by both methods was used for recursive feature elimination (RFE), ultimately yielding the optimal subset of features for constructing Cubist and Recurrent Neural Network (RNN) yield prediction models. The results of this study demonstrate that the Cubist model, constructed using the optimal subset of features obtained through the integrated feature selection method (PCRF-RFE), consistently outperformed the RNN model. It exhibited the highest accuracy during both the flowering and grain filling stages, surpassing models constructed using all features or subsets derived from a single feature selection method. This confirms the efficacy of the PCRF-RFE method and offers valuable insights and references for future research in the realms of feature selection and yield prediction studies.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3