Author:
He Yun,Zhang Guangchuan,Gao Quan
Abstract
Deep learning models have been widely applied in the field of crop disease recognition. There are various types of crops and diseases, each potentially possessing distinct and effective features. This brings a great challenge to the generalization performance of recognition models and makes it very difficult to build a unified model capable of achieving optimal recognition performance on all kinds of crops and diseases. In order to solve this problem, we have proposed a novel ensemble learning method for crop leaf disease recognition (named ELCDR). Unlike the traditional voting strategy of ensemble learning, ELCDR assigns different weights to the models based on their feature extraction performance during ensemble learning. In ELCDR, the models’ feature extraction performance is measured by the distribution of the feature vectors of the training set. If a model could distinguish more feature differences between different categories, then it receives a higher weight during ensemble learning. We conducted experiments on the disease images of four kinds of crops. The experimental results show that in comparison to the optimal single model recognition method, ELCDR improves by as much as 1.5 (apple), 0.88 (corn), 2.25 (grape), and 1.5 (rice) percentage points in accuracy. Compared with the voting strategy of ensemble learning, ELCDR improves by as much as 1.75 (apple), 1.25 (corn), 0.75 (grape), and 7 (rice) percentage points in accuracy in each case. Additionally, ELCDR also has improvements on precision, recall, and F1 measure metrics. These experiments provide evidence of the effectiveness of ELCDR in the realm of crop leaf disease recognition.
Reference39 articles.
1. A new hybrid intelligent GAACO algorithm for automatic image segmentation and plant leaf or fruit diseases identification using TSVM classifier;Ahmed,2019
2. A review of machine learning approaches in plant leaf disease detection and classification;Applalanaidu,2021
3. Bell pepper leaf disease classification with LBP and VGG-16 based fused features and RF classifier;Bhagat;Int. J. Inf. Technol.,2023
4. A particle swarm optimization based ensemble for vegetable crop disease recognition;Chaudhary;Comput. Electron. Agricult.,2020
5. AlexNet convolutional neural network for disease detection and classification of tomato leaf;Chen;Electronics,2022
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献