Spatiotemporal Dynamics of the Carbon Budget and the Response to Grazing in Qinghai Grasslands

Author:

Huang Xiaotao,Chen Chunbo,Yao Buqing,Ma Zhen,Zhou Huakun

Abstract

Estimating the grassland carbon budget is critically important for ensuring that grassland resources are used sustainably. However, the spatiotemporal dynamics of the carbon budget and the response to grazing have not yet been characterized in Qinghai grasslands. Here, we estimated the gross primary productivity (GPP) and net ecosystem exchange (NEE) in Qinghai grasslands using the improved Biome-BGCMuSo model to characterize the spatiotemporal dynamics of the carbon budget and the response to grazing in this region from 1979 to 2018. The GPP of Qinghai grasslands fluctuated during the study period, with an average annual value of 118.78 gC/m2. The NEE of Qinghai grasslands fluctuated from 1979 to 2018, with an average value of −5.16 gC/m2. After 2,000, GPP increased, and NEE decreased in a fluctuating manner. There were clear regional differences in GPP and NEE. GPP was low in most areas of Qinghai, and GPP was high in eastern and southern Qinghai. The southern, southeastern, and northeastern parts of Qinghai were mainly carbon sinks, and the northwestern part of Qinghai and the region between the southeastern and northeastern parts of Qinghai were mainly carbon sources. Grazing generally decreased GPP and increased NEE in Qinghai grasslands from 1979 to 2018. There was spatial heterogeneity in the effect of grazing on GPP and NEE. Under grazing, GPP and NEE were significantly decreased mainly in eastern Qinghai, and GPP and NEE were significantly increased mainly in southern and eastern Qinghai. NEE was most affected by grazing in eastern Qinghai. The results of this study aid our understanding of the mechanism driving variation in the grassland carbon budget and provide new data that could be used to support local grassland management.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference66 articles.

1. Grassland degradation significantly enhances soil CO2 emission.;Abdalla;Catena,2018

2. Integrating biophysical and socio-economic factors for land-use and land-cover change projection in agricultural economic regions.;Anh Nguyet;Ecol. Modell.,2017

3. International cooperative initiatives and the United Nations framework convention on climate change.;Bakhtiari;Clim. Policy,2018

4. Improved simulation of poorly drained forests using Biome-BGC.;Bond-Lamberty;Tree Physiol.,2007

5. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau.;Chai;Chin. J. Plant Ecol.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3