Study on Pear Flowers Detection Performance of YOLO-PEFL Model Trained With Synthetic Target Images

Author:

Wang Chenglin,Wang Yawei,Liu Suchwen,Lin Guichao,He Peng,Zhang Zhaoguo,Zhou Yi

Abstract

Accurate detection of pear flowers is an important measure for pear orchard yield estimation, which plays a vital role in improving pear yield and predicting pear price trends. This study proposed an improved YOLOv4 model called YOLO-PEFL model for accurate pear flower detection in the natural environment. Pear flower targets were artificially synthesized with pear flower’s surface features. The synthetic pear flower targets and the backgrounds of the original pear flower images were used as the inputs of the YOLO-PEFL model. ShuffleNetv2 embedded by the SENet (Squeeze-and-Excitation Networks) module replacing the original backbone network of the YOLOv4 model formed the backbone of the YOLO-PEFL model. The parameters of the YOLO-PEFL model were fine-tuned to change the size of the initial anchor frame. The experimental results showed that the average precision of the YOLO-PEFL model was 96.71%, the model size was reduced by about 80%, and the average detection speed was 0.027s. Compared with the YOLOv4 model and the YOLOv4-tiny model, the YOLO-PEFL model had better performance in model size, detection accuracy, and detection speed, which effectively reduced the model deployment cost and improved the model efficiency. It implied the proposed YOLO-PEFL model could accurately detect pear flowers with high efficiency in the natural environment.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference42 articles.

1. Automated Flower Species Detection and Recognition from Digital Images.;Aalaa;Int. J. Comput. Sci. Net.,2017

2. Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.;Abdurahman;BMC Bioinform.,2021

3. Melanoma Lesion Detection and Segmentation Using YOLOv4-DarkNet and Active Contour.;Albahli;IEEE Access,2020

4. YOLOv4: optimal Speed and Accuracy of Object Detection.;Alexey;ArXiv,2020

5. A flower recognition system based on image processing and neural networks.;Almogdady;Int. J. S. Technol. Res.,2018

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3