Identification of key genes controlling soluble sugar and glucosinolate biosynthesis in Chinese cabbage by integrating metabolome and genome-wide transcriptome analysis

Author:

Wang Lixia,Zhang Shu,Li Jingjuan,Zhang Yihui,Zhou Dandan,Li Cheng,He Lilong,Li Huayin,Wang Fengde,Gao Jianwei

Abstract

IntroductionSoluble sugar and glucosinolate are essential components that determine the flavor of Chinese cabbage and consumer preferences. However, the underlying regulatory networks that modulate the biosynthesis of soluble sugar and glucosinolate in Chinese cabbage remain largely unknown.MethodsThe glucosinolate and carotene content in yellow inner-leaf Chinese cabbage were observed, followed by the combination of metabolome and transcriptome analysis to explore the metabolic basis of glucosinolate and soluble sugar.ResultsThis study observed high glucosinolate and carotene content in yellow inner-leaf Chinese cabbage, which showed a lower soluble sugar content. The differences between the yellow and the white inner-leaf Chinese cabbage were compared using the untargeted metabonomic and transcriptomic analyses in six cultivars of Chinese cabbage to explore the metabolic basis of glucosinolate and soluble sugar. Aliphatic glucosinolate and two soluble sugars (fructose and glucose) were the key metabolites that caused the difference in Chinese cabbage’s glucosinolate and soluble sugar. By integrating soluble sugar and glucosinolate-associated metabolism and transcriptome data, we indicated BraA05gAOP1 and BraA04gAOP4, BraA03gHT7 and BraA01gHT4 were the glucosinolates and soluble sugar biosynthesis structural genes. Moreover, BraA01gCHR11 and BraA07gSCL1 were two vital transcription factors that regulate soluble sugar and glucosinolate biosynthesis.DiscussionThese findings provide novel insights into glucosinolate and soluble sugar biosynthesis and a possible explanation for the significant difference in nutrients between yellow and white inner-leaf Chinese cabbage. Moreover, it will facilitate genetic modification to improve the Chinese cabbage’s nutritional and health values.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3