Effects of drought stress on water content and biomass distribution in summer maize(Zea mays L.)

Author:

Yan Siying,Weng Baisha,Jing Lanshu,Bi Wuxia

Abstract

The resource allocation of different component organs of crops under drought stress is a strategy for the coordinated growth of crops, which also reflects the adaptability of crops to drought condition. In this study, maize variety namely ‘Denghai 618’, under the ventilation shed, two treatment groups of light drought (LD) and moderate drought (MD), and the same rehydration after drought are set, as well as the normal water supply for control in shed (CS). The drought experiment was conducted in the jointing–tasseling stage in 2021. The effects of different drought stress on the water content and biomass allocation of each component organ were analyzed. The results showed that (1) during the drought period, the water content of each component organ of summer maize decreased in general, but the Water content distribution ratio (WCDR) of the root increased by 1.83%– 2.35%. The WCDR of stem increased by 0.52%– 1.40%. (2) Under different drought treatments, the root biomass (RB) increased 33.94% ~ 46.09%, and fruit biomass (FB) increased 1.46% ~ 2.49%, the leaf biomass (LB) decreased by 8.2% and 1.46% respectively under LD and MD. (3) The allometric growth model constructed under sufficient water is not suitable for drought stress; the allometric exponent α under drought stress is lower than that of the CS: CS (α=1.175) > MD (α = 1.136) > LD (α = 1.048), which also indicates that the impact of existing climate change on grain yield may be underestimated. This study is helpful to understand the adaptive strategies of the coordinated growth of maize component organs under drought stress and provide a reference for the prediction of grain yield under climate change.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Institute of Water Resources and Hydropower Research

Publisher

Frontiers Media SA

Subject

Plant Science

Reference58 articles.

1. Arbuscular mycorrhiza symbiosis enhances water status and soil-plant hydraulic conductance under drought;Abdalla;Front. Plant Sci.,2021

2. Growth performance and biomass partitioning of the desert shrub calotropis procera under water stress conditions;Boutraa;Res. J. Agric. Biol. Sci.,2010

3. Agronomic components of drought stressed wheat plants under different soil properties;David;Vegetos- Int. J. Plant Res.,2018

4. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils;Egamberdiyeva;Appl. Soil Ecol.,2007

5. Global allocation rules for patterns of biomass partitioning in seed plants;Enquist;Science,2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3