Phylogeny and Taxonomy on Cryptic Species of Forked Ferns of Asia

Author:

Wei Zuoying,Xia Zengqiang,Shu Jiangping,Shang Hui,Maxwell Stephen J.,Chen Lijun,Zhou Xile,Xi Wang,Adjie Bayu,Yuan Quan,Cao Jianguo,Yan Yuehong

Abstract

Cryptic species comprise two or more taxa that are grounded under a single name because they are more-or-less indistinguishable morphologically. These species are potentially important for detailed assessments of biodiversity, but there now appear to be many more cryptic species than previously estimated. One taxonomic group likely to contain many cryptic species is Dicranopteris, a genus of forked ferns that occurs commonly along roadsides in Asia. The genus has a complex taxonomical history, and D. linearis has been particularly challenging with many intra-specific taxa dubiously erected to accommodate morphological variation that lacks clear discontinuities. To resolve species boundaries within Dicranopteris, we applied a molecular phylogenetic approach as complementary to morphology. Specifically, we used five chloroplast gene regions (rbcL, atpB, rps4, matK, and trnL-trnF) to generate a well-resolved phylogeny based on 37 samples representing 13 taxa of Dicranopteris, spanning the major distributional area in Asia. The results showed that Dicranopteris consists of ten highly supported clades, and D. linearis is polyphyletic, suggesting cryptic diversity within the species. Further through morphological comparison, we certainly erected Dicranopteris austrosinensis Y.H. Yan & Z.Y. Wei sp. nov. and Dicranopteris baliensis Y.H. Yan & Z.Y. Wei sp. nov. as distinct species and proposed five new combinations. We also inferred that the extant diversity of the genus Dicranopteris may result from relatively recent diversification in the Miocene based on divergence time dating. Overall, our study not only provided additional insights on the Gleicheniaceae tree of life, but also served as a case of integrating molecular and morphological approaches to elucidate cryptic diversity in taxonomically difficult groups.

Funder

Strategic Innovation Fund

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3