Light thinning can improve soil water availability and water holding capacity of plantations in alpine mountains

Author:

Gao Yuan,He Zhibin,Zhu Xi,Chen Longfei,Du Jun

Abstract

The establishment of large-scale forest plantations in the arid and semi-arid area of the Qilian Mountains in China has effectively protected water and soil resources and enhanced carbon sequestration capacity of forest ecosystems. However, the effects of different management practices in these plantations on soil water holding capacity (SWHC) and soil water availability (SWA) are uncertain in this fragile ecosystem. Here, we investigated the effects of no thinning (NT), light thinning (LT, 20% thinning intensity), and heavy thinning (HT, 40% thinning intensity) on SWHC and SWA in different soil depths of a forest plantation, and compared them to those in a natural Picea crassifolia forest (NF). Our results revealed that at low soil water suction stage, SWHC in the plantations (LT, HT, and NT) was greater in the topsoil layer (0-40 cm) than that in the NF site, while SWHC in the subsoil layer (40-80 cm) in NF was significantly greater than that in the thinning stands. At medium and high-water suction stage, SWHC in LT and NF stands was greater than that in HT and NT. Soil water characteristic curves fitted by VG model showed that the relative change in soil water content in LT topsoil layer was the smallest and SWHC was greatest. Changes in soil physicochemical properties included higher bulk density and lower total porosity, which reduced the number of macropores in the soil and affected SWHC. The bulk density, total porosity, silt content, and field capacity were the main factors jointly affecting SWA. High planting density was the main reason for the low SWA and SWHC in NT, but this can be alleviated by stand thinning. Overall, 20% thinning intensity (light intensity thinning) may be an effective forest management practice to optimize SWHC and SWA in P. crassifolia plantations to alleviate soil water deficits.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3