Evaluation of Roholtiella sp. Extract on Bell Pepper (Capsicum annuum L.) Yield and Quality in a Hydroponic Greenhouse System

Author:

Bello Adewale Suraj,Saadaoui Imen,Ahmed Talaat,Hamdi Helmi,Cherif Maroua,Ben-Hamadou Radhouane

Abstract

This study was carried out to investigate the impacts of cyanobacteria (Roholtiella sp.) high-value product extract (HVPE) and water resuspended biomass WRB treatments on bell pepper production using the hydroponic system under greenhouse conditions. Six cyanobacteria treatments (6 ml L−1, 4 ml L−1, and 2 ml L−1 – HVPE, 6 ml L−1, 4 ml L−1, and 2 ml L−1 – WRB, and TR0 as control) were evaluated using the foliar application method. The results showed that foliar application of HVPE with treatments of 2 ml L−1, 4 ml L−1, and 6 ml L−1 produced significantly higher values of physical growth parameters of bell pepper (BP) plants (shoot length, the number of leaves, plant leaf length, plant leaf width, and the diameter of the shoot), SPAD index, yield components (the fruit length, fruit width, the number of fruit per plant, and fresh weight per fruit), biochemical composition [ascorbic acid, phenolic acid, and total soluble solids (TSS)], and the total yield compared to the control group TR0. Also, significant higher values of growth parameters (shoot length, the number of leaves, plant leaf length, plant leaf width, the diameter of the shoot), SPAD index, yield components (the fruit length, fruit width, the number of fruits per plant, and fresh weight per fruit), biochemical composition [ascorbic acid, phenolic acid, and total soluble solids (TSS)], and the total yield were obtained with foliar spraying WRB at 2 ml L−1, 4 ml L−1, and 6 ml L−1 compared to the control group TR0. Consequently, the treated bell pepper with Roholtiella sp. HVPE and WRB were more efficient in enhancing production and chemical constituents compared with the control group.

Funder

Qatar University

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3